skip to main content


Search for: All records

Creators/Authors contains: "Hall, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Southern California is a biodiversity hotspot and home to over 23 million people. Over recent decades the annual wildfire area in the coastal southern California region has not significantly changed. Yet how fire regime will respond to future anthropogenic climate change remains an important question. Here, we estimate wildfire probability in southern California at station scale and daily resolution using random forest algorithms and downscaled earth system model simulations. We project that large fire days will increase from 36 days/year during 1970–1999 to 58 days/year under moderate greenhouse gas emission scenario (RCP4.5) and 71 days/year by 2070–2099 under a high emission scenario (RCP8.5). The large fire season will be more intense and have an earlier onset and delayed end. Our findings suggest that despite the lack of a contemporary trend in fire regime, projected greenhouse gas emissions will substantially increase the fire danger in southern California by 2099.

     
    more » « less
  2. Abstract Daily and subdaily precipitation extremes in historical phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01 to 10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes, the multimodel median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes ( r = −0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction ( r = −0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These intermodel differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible twenty-first-century projections. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Overestimation of precipitation frequency and duration while underestimating intensity, that is, the “drizzling” bias, has been a long‐standing problem of global climate models. Here we explore this issue from the perspective of precipitation partitioning. We found that most models in the Climate Model Intercomparison Project Phase 5 (CMIP5) have high convective‐to‐total precipitation (PC/PR) ratios in low latitudes. Convective precipitation has higher frequency and longer duration but lower intensity than non‐convective precipitation in many models. As a result, the high PC/PR ratio contributes to the “drizzling” bias over low latitudes. The PC/PR ratio and associated “drizzling” bias increase as model resolution coarsens from 0.5° to 2.0°, but the resolution's effect weakens as the grid spacing increases from 2.0° to 3.0°. Some of the CMIP6 models show reduced “drizzling” bias associated with decreased PC/PR ratio. Thus, more reasonable precipitation partitioning, along with finer model resolution should alleviate the “drizzling” bias within current climate models.

     
    more » « less
  5. Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape. These include chemical frustration, which derives from competing factors in the anion–cation interaction; structural frustration, which arises from lattice arrangements that induce site distortion or prevent cation ordering; and dynamical frustration, which is associated with temporary fluctuations in the energy landscape due to anion reorientation or cation reconfiguration. For each class of frustration, we provide detailed simulation analyses of various materials to show how ion mobility is facilitated, resulting in stabilizing factors that are both entropic and enthalpic in origin. We propose the use of these categories as a general construct for classifying frustration in superionic conductors and discuss implications for future development of suitable descriptors and improvement strategies. This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’. 
    more » « less
  6. Abstract

    Emergent constraints use relationships between future and current climate states to constrain projections of climate response. Here we introduce a statistical, hierarchical emergent constraint (HEC) framework in order to link future and current climates with observations. Under Gaussian assumptions, the mean and variance of the future state are shown analytically to be a function of the signal‐to‐noise ratio between current climate uncertainty and observation error and the correlation between future and current climate states. We apply the HEC to the climate change, snow‐albedo feedback, which is related to the seasonal cycle in the Northern Hemisphere. We obtain a snow‐albedo feedback prediction interval of (−1.25,−0.58)%/K. The critical dependence on signal‐to‐noise ratio and correlation shows that neglecting these terms can lead to bias and underestimated uncertainty in constrained projections. The flexibility of using HEC under general assumptions throughout the Earth system is discussed.

     
    more » « less