Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global climate model (GCM) projections of future climate are uncertain largely due to a persistent spread in cloud feedback. This is despite efforts to reduce this model uncertainty through a variety of emergent constraints (ECs); with several studies suggesting an important role for present‐day biases in clouds. Here, we use three generations of GCMs to assess the value of climatological cloud metrics for constraining uncertainty in cloud feedback. We find that shortwave cloud radiative properties across the Southern Hemisphere extratropics are most robustly correlated with tropical cloud feedback (TCF). Using this relationship in conjunction with observations, we produce an EC that yields a TCF value of 0.52 ± 0.34 W/m2/K, which equates to a 34% reduction in uncertainty. Thus, we show that climatological cloud properties can be used to reduce uncertainty in how clouds will respond to future warming.more » « lessFree, publicly-accessible full text available December 28, 2025
-
In the past decade, dynamical downscaling using “pseudo‐global‐warming” (PGW) techniques has been applied frequently to project regional climate change. Such techniques generate signals by adding mean global climate model (GCM)‐simulated climate change signals in temperature, moisture, and circulation to lateral and surface boundary conditions derived from reanalysis. An alternative to PGW is to downscale GCM data directly. This technique should be advantageous, especially for simulation of extremes, since it incorporates the GCM's full spectrum of changing synoptic‐scale dynamics in the regional solution. Here, we test this assumption, by comparing simulations in Europe and Western North America. We find that for warming and changes in temperature extremes, PGW often produces similar results to direct downscaling in both regions. For mean and extreme precipitation changes, PGW generally also performs surprisingly well in many cases. Moisture budget analysis in the Western North America domain reveals why. Large fractions of the downscaled hydroclimate changes arise from mean changes in large‐scale thermodynamics and circulation, that is, increases in temperature, moisture, and winds, included in PGW by design. The one component PGW may have difficulty with is the contribution from changes in synoptic‐scale variability. When this component is large, PGW performance could be degraded. Global analysis of GCM data shows there are regions where it is large or dominant. Hence, our results provide a road map to identify, through GCM analyses, the circumstances when PGW would not be expected to accurately regionalize GCM climate signals.more » « lessFree, publicly-accessible full text available December 28, 2025
-
The increasing prevalence of low snow conditions in a warming climate has attracted substantial attention in recent years, but a focus exclusively on low snow leaves high snow years relatively underexplored. However, these large snow years are hydrologically and economically important in regions where snow is critical for water resources. Here, we introduce the term “snow deluge” and use anomalously high snowpack in California’s Sierra Nevada during the 2023 water year as a case study. Snow monitoring sites across the state had a median 41 y return interval for April 1 snow water equivalent (SWE). Similarly, a process-based snow model showed a 54 y return interval for statewide April 1 SWE (90% CI: 38 to 109 y). While snow droughts can result from either warm or dry conditions, snow deluges require both cool and wet conditions. Relative to the last century, cool-season temperature and precipitation during California’s 2023 snow deluge were both moderately anomalous, while temperature was highly anomalous relative to recent climatology. Downscaled climate models in the Shared Socioeconomic Pathway-370 scenario indicate that California snow deluges—which we define as the 20 y April 1 SWE event—are projected to decline with climate change (58% decline by late century), although less so than median snow years (73% decline by late century). This pattern occurs across the western United States. Changes to snow deluge, and discrepancies between snow deluge and median snow year changes, could impact water resources and ecosystems. Understanding these changes is therefore critical to appropriate climate adaptation.more » « less
-
Abstract Daily and subdaily precipitation extremes in historical phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01 to 10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes, the multimodel median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes ( r = −0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction ( r = −0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These intermodel differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible twenty-first-century projections.more » « less
-
Abstract Overestimation of precipitation frequency and duration while underestimating intensity, that is, the “drizzling” bias, has been a long‐standing problem of global climate models. Here we explore this issue from the perspective of precipitation partitioning. We found that most models in the Climate Model Intercomparison Project Phase 5 (CMIP5) have high convective‐to‐total precipitation (PC/PR) ratios in low latitudes. Convective precipitation has higher frequency and longer duration but lower intensity than non‐convective precipitation in many models. As a result, the high PC/PR ratio contributes to the “drizzling” bias over low latitudes. The PC/PR ratio and associated “drizzling” bias increase as model resolution coarsens from 0.5° to 2.0°, but the resolution's effect weakens as the grid spacing increases from 2.0° to 3.0°. Some of the CMIP6 models show reduced “drizzling” bias associated with decreased PC/PR ratio. Thus, more reasonable precipitation partitioning, along with finer model resolution should alleviate the “drizzling” bias within current climate models.more » « less
-
Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape. These include chemical frustration, which derives from competing factors in the anion–cation interaction; structural frustration, which arises from lattice arrangements that induce site distortion or prevent cation ordering; and dynamical frustration, which is associated with temporary fluctuations in the energy landscape due to anion reorientation or cation reconfiguration. For each class of frustration, we provide detailed simulation analyses of various materials to show how ion mobility is facilitated, resulting in stabilizing factors that are both entropic and enthalpic in origin. We propose the use of these categories as a general construct for classifying frustration in superionic conductors and discuss implications for future development of suitable descriptors and improvement strategies. This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.more » « less
An official website of the United States government
